Cyclic GMP-dependent protein kinase EGL-4 controls body size and lifespan in C elegans.

نویسندگان

  • Takashi Hirose
  • Yoshiya Nakano
  • Yasuko Nagamatsu
  • Takashi Misumi
  • Hiromitsu Ohta
  • Yasumi Ohshima
چکیده

We designed an automatic system to measure body length, diameters and volume of a C. elegans worm. By using this system, mutants with an increased body volume exceeding 50% were isolated. Four of them are grossly normal in morphology and development, grow longer to be almost twice as big, and have weak egg-laying defects and extended lifespan. All the four mutants have a mutation in the egl-4 gene. We show that the egl-4 gene encodes cGMP-dependent protein kinases. egl-4 promoter::gfp fusion genes are mainly expressed in head neurons, hypodermis, intestine and body wall muscles. Procedures to analyze morphology and volume of major organs were developed. The results indicate that volumes of intestine, hypodermis and muscle and cell volumes in intestine and muscle are increased in the egl-4 mutants, whereas cell numbers are not. Experiments on genetic interaction suggest that the cGMP-EGL-4 signaling pathway represses body size and lifespan through DBL-1/TGF-beta and insulin pathways, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel gain-of-function mutant of the cyclic GMP-dependent protein kinase egl-4 affects multiple physiological processes in Caenorhabditis elegans.

cGMP-dependent protein kinases are key intracellular transducers of cell signaling. We identified a novel dominant mutation in the C. elegans egl-4 cGMP-dependent protein kinase (PKG) and show that this mutation causes increased normal gene activity although it is associated with a reduced EGL-4 protein level. Prior phenotypic analyses of this gain-of-function mutant demonstrated a reduced long...

متن کامل

The Cyclic GMP-Dependent Protein Kinase EGL-4 Regulates Olfactory Adaptation in C. elegans

Prolonged odor exposure causes a specific, reversible adaptation of olfactory responses. A genetic screen for negative regulators of olfaction uncovered mutations in the cGMP-dependent protein kinase EGL-4 that disrupt olfactory adaptation in C. elegans. G protein-coupled olfactory receptors within the AWC olfactory neuron signal through cGMP and a cGMP-gated channel. The cGMP-dependent kinase ...

متن کامل

The Importance of cGMP Signaling in Sensory Cilia for Body Size Regulation in Caenorhabditis elegans.

The body size of Caenorhabditis elegans is thought to be controlled by sensory inputs because many mutants with sensory cilium structure defects exhibit small body size. The EGL-4 cGMP-dependent protein kinase acts in sensory neurons to reduce body size when animals fail to perceive sensory signals. In addition to body size control, EGL-4 regulates various other behavioral and developmental pat...

متن کامل

Regulation of Body Size and Behavioral State of C. elegans by Sensory Perception and the EGL-4 cGMP-Dependent Protein Kinase

The growth and behavior of higher organisms depend on the accurate perception and integration of sensory stimuli by the nervous system. We show that defects in sensory perception in C. elegans result in abnormalities in the growth of the animal and in the expression of alternative behavioral states. Our analysis suggests that sensory neurons modulate neural or neuroendocrine functions, regulati...

متن کامل

The C. elegans cGMP-Dependent Protein Kinase EGL-4 Regulates Nociceptive Behavioral Sensitivity

Signaling levels within sensory neurons must be tightly regulated to allow cells to integrate information from multiple signaling inputs and to respond to new stimuli. Herein we report a new role for the cGMP-dependent protein kinase EGL-4 in the negative regulation of G protein-coupled nociceptive chemosensory signaling. C. elegans lacking EGL-4 function are hypersensitive in their behavioral ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 130 6  شماره 

صفحات  -

تاریخ انتشار 2003